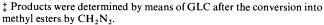
## Organized Photocyclodimerization of Laurylammonium Indene-2-carboxylate Aggregate

Katsuhiko Takagi, Eiji Nambara, Hisanao Usami, Mariko Itoh and Yasuhiko Sawaki\* Department of Applied Chemistry, Faculty of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan


Irradiation of laurylammonium indene-2-carboxylate 1, a self-associating photoreactive surfactant, gives rise to stereoselective formation of *syn-* 2 and *anti* head-to-head dimers 3 depending upon the choice of solvent.

100

Recent attention focussed on the unique role of microheterogeneous fields in controlling photoreactions,<sup>1</sup> has shown that molecular aggregates of micelles serve as intriguing reaction media for efficient photocycloaddition of organized olefins.<sup>2–4</sup> Thus, the photolysis of laurylammonium cinnamate gave the head-to-head dimers,  $\beta$ - and  $\delta$ -truxinic acids in CCl<sub>4</sub>.<sup>4</sup> Since the aggregation structure depends on the alkylammonium carboxylate concentration and the solvent employed,<sup>5</sup> it may influence the regio- and/or stereo-chemistry of particular photochemical reactions. Here we report on a novel stereoselective photodimerization of laurylammonium indene-2-carboxylate 1 which may be controlled in the presence of dispersing solvents.

Irradiation of 1<sup>+</sup> (5 mmol dm<sup>-3</sup>) in CCl<sub>4</sub> by Pyrex-filtered light (>290 nm) under Ar gave the syn head-to-head 2 ( $\beta$ isomer) in addition to small amounts of anti head-to-head 3 (8isomer) and anti head-to-tail dimers 4 (E-isomer); the quantum yields were 0.11, 0.02 and 0.02, respectively. The other isomer, syn head-to-tail dimer 5 ( $\alpha$ -isomer) was not observed in the reaction mixture.<sup>‡</sup> Here, the presence of laurylamine is necessary for the photodimerization. For example, an homogeneous solution of methyl indene-2-carboxylate 6 in CCl<sub>4</sub> was quite resistant to photodimerization under similar conditions; *i.e.*, the quantum yield for its consumption was only 0.006 (product ratio: 2:3:4 = 24:16:60). The overall quantum yield for formation of the cyclodimers 2-5 increased with increasing concentration of 1, a discontinuity occurring at ca. 2.0 mmol  $dm^{-3}$  (see Fig. 1). The critical micelle concentration of the reversed micelle 1 in  $CCl_4$  was estimated according to Fendler's procedure<sup>6</sup> to be 0.65 mmol dm<sup>-3</sup> with an aggregation

<sup>†</sup> Prepared by dissolving an equimolar mixture of laurylamine and indene-2-carboxylic acid in methanol, stirring for 1 h, and then rotary evaporation *in vacuo*.



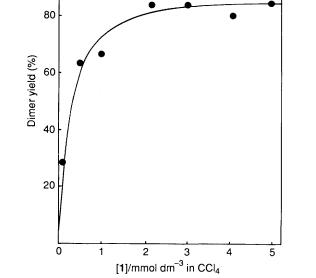



Fig. 1 Effect of the concentration of 1 on the total yields of cyclodimers; irradiation time: 30 min

number  $(N_A)$  of 2.8,§ which is comparable with the above described discontinuity in Fig. 1. Thus, small aggregates consisting of 2-3 molecules of 1 cause the effective

§ Since the figure is too small for the term of micelle to be used, these small aggregates may, rather, be termed premicelles. Laurylammonium propionate, a typical reversed micelle-forming surfactant, has  $N_A$  3–7 in benzene (ref. 5).

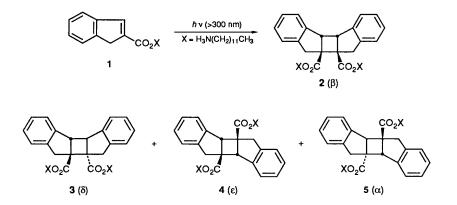



Table 1 Solvent effect on isomer distributions from irradiation of 1 and  $6^{\alpha}$ 

| X in <b>1</b>                                                      | Solvent                                    | Isomeric cyclodimer (%) |       |       |       |
|--------------------------------------------------------------------|--------------------------------------------|-------------------------|-------|-------|-------|
|                                                                    |                                            | <b>2</b> (β)            | 3 (δ) | 4 (ε) | 5 (α) |
| H <sub>3</sub> N(CH <sub>2</sub> ) <sub>11</sub> Me 1 <sup>b</sup> | CCl₄                                       | 72                      | 13    | 14    |       |
|                                                                    | $C_6 H_6$                                  | 74                      | 12    | 14    |       |
|                                                                    | C <sub>6</sub> H <sub>6</sub> <sup>c</sup> | 74                      | 10    | 16    |       |
|                                                                    | CHCl <sub>3</sub>                          | 54                      | 19    | 28    |       |
|                                                                    | MeOĤ                                       |                         | 85    | 11    | 4     |
|                                                                    | MeCN                                       |                         | 88    | 12    |       |
| Me 6 <sup><i>d</i></sup>                                           | CCl4 <sup>e</sup>                          | 24                      | 16    | 60    |       |
|                                                                    | $C_6H_6$                                   | 8                       | 29    | 37    | 26    |
|                                                                    | CHČl,                                      |                         | 29    | 29    | 42    |
|                                                                    | MeOH                                       | 27                      | 27    | 22    | 24    |
|                                                                    | MeCN                                       | 21                      | 26    | 26    | 27    |

<sup>*a*</sup> Conversion: 30–55%. <sup>*b*</sup> Irrad. time of 0.5 h. <sup>*c*</sup> Dried by distillation over calcium hydride. <sup>*d*</sup> Irrad. time of 3 h. <sup>*e*</sup> Chlorinated methyl indene-2-carboxylates were also detected by GC-MS analyses.

photocyclodimerization. The significance of the self-aggregation of 1 is also supported by the inefficient and non-selective photodimerization of 6.

A pronounced solvent effect on the cyclodimer selectivity was

noted in the photolysis of 1 (Table 1). That is, the  $\beta$ -cyclodimer 2 was preferentially formed on irradiation of 1 in non-polar solvents, *e.g.*, benzene, while the  $\delta$ -isomer 3 was selectively obtained in polar solvents such as acetonitrile. This behaviour is in contrast to that of 6, which gave non-selective formation of mixtures of 2–5 in both benzene and acetonitrile.

A detailed study is now in progress in order to clarify the origin of the above described selectivity.

## References

- 1 G. Von Buenau and T. Wolff, Adv. Photochem., 1988, 14, 273.
- 2 V. Ramamurthy, Tetrahedron, 1986, 42, 5753.
- 3 K. Takagi, B. R. Suddaby, S. L. Vada, C. A. Backer and D. G. Whitten, J. Am. Chem. Soc., 1986, **108**, 7865.
- 4 K. Takagi, H. Fukaya, N. Miyake and Y. Sawaki, Chem. Lett., 1988, 1053.
- 5 J. H. Fendler, *Membrane Mimetic Chemistry*, Wiley, New York, 1982, p. 48.
- 6 J. H. Fendler, E. J. Fendler and O. A. Seoud, J. Chem. Soc., Faraday Trans. 1, 1973, 69, 280.

Paper 0/05418F Received 3rd December 1990 Accepted 3rd December 1990